Emerging Infections

"New, reemerging or drug-resistant infections whose incidence in humans has increased within the past two decades or whose incidence threatens to increase in the near future."

Emerging Infections: Microbial Threats to Health in the United States. Institute of Medicine, 1992.
Epidemics of Emerging Diseases, 1996–2003

Emerging Infectious Diseases:
Major resources are lost

- **USA, Periodically:**
 - *E. coli O157*
 - Meat recall/destruction

- **USA, 2001:**
 - Anthrax
 - US$ 250 million?

- **Peru, 1991:**
 - Cholera
 - US$ 770 million

- **U.K., 1990-98:**
 - BSE
 - US$ 9 billion

- **India, 1994:**
 - Plague
 - US$ 2 billion

- **Tanzania, 1998:**
 - Cholera
 - US$ 36 million

- **Malaysia, 1999:**
 - Nipah Virus
 - Swine slaughtering
 - US$ 540 million

- **China, 2003:**
 - SARS
 - US$ 25 billion

- **Hong Kong, 1997:**
 - Influenza A (H5N1)
 - Poultry slaughtering
 - US$ 22 million
SARS, Spring 2003: Economic Impact on South-East Asian Economy

Estimated costs of SARS Epidemic worldwide: US $ 60-80 Billion

- HONG KONG: Budget of US $ 15 billion to deal with consequences of SARS
- CHINA: US $ 420 million to establish a National Health Surveillance network + US$ 240 million for penniless patients
- SINGAPOUR: Program of US $ 230 million to support transportation, hotels and shops affected by the epidemic.

TOURISM INCOME

FEBRUARY MARCH APRIL MAY

LESS 40%

Estimated costs of SARS Epidemic worldwide:

Emerging and Re-emerging Zoonoses

- Zoonoses: “The diseases and infections which are naturally transmitted between vertebrate animals and man.” (WHO, 1951)

- Emerging and re-emerging zoonoses: “Zoonotic diseases caused either by totally new or partially new agents, or by micro-organisms previously known, but now occurring in places or in species where the disease was previously unknown.” (Meslin, WHO, 1992)
ZOONOSES and the RISK of DISEASE EMERGENCE

<table>
<thead>
<tr>
<th>Infectious Organisms</th>
<th>Human Pathogens (N=1415)</th>
<th>Zoonoses (N=868)</th>
<th>Emerging Pathogens (N=175)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viruses/Prions</td>
<td>217 (15%)</td>
<td>165 (19%)</td>
<td>77 (44%)</td>
</tr>
<tr>
<td>Bacteria/Rickettsia</td>
<td>538 (38%)</td>
<td>269 (31%)</td>
<td>52 (30%)</td>
</tr>
<tr>
<td>Fungi</td>
<td>307 (22%)</td>
<td>113 (13%)</td>
<td>16 (9%)</td>
</tr>
<tr>
<td>Helminths</td>
<td>287 (20%)</td>
<td>278 (32%)</td>
<td>10 (6%)</td>
</tr>
<tr>
<td>Protozoa</td>
<td>66 (5%)</td>
<td>43 (5%)</td>
<td>19 (11%)</td>
</tr>
</tbody>
</table>

- 61% of the human pathogens are zoonotic and 12% are emerging pathogens. 75% (132/175) of the emerging pathogens are zoonotic. Overall, zoonotic pathogens are twice as likely to be associated with emerging diseases than non-zoonotic ones.

All but one of classified category A biological agents for bioterrorism and most of category B are zoonoses.

Emerging Zoonoses

- Some Major Bacterial Etiologic Agents of New Zoonoses Identified Since 1976

 - 1976 Capnocytophaga canimorsus
 - 1977 Campylobacter spp.
 - 1982 *E. coli* O157:H7
 - 1982 *Borrelia burgdorferi* (Lyme disease)
 - 1983 *Helicobacter pylori* and other spp.
 - 1986 *Ehrlichia chaffeensis* (HME)
 - 1992 *Bartonella henselae* (Cat scratch Disease)
 - 1994 *Rickettsia felis* (Murine typhus like)
 - 1994 *E. Equi/A. phagocytophila* (HGE)
Emerging Zoonoses

• Some Major Viral Etiologic Agents of New Zoonoses Identified Since 1990
 • 1991 Guanarito virus (Venezuelan hemorrhagic fever)
 • 1993 Sin nombre virus (Hantavirus Pulmonary Syndrome)
 • 1994 Sabia virus (Brazilian hemorrhagic fever)
 • 1994 Hendra virus (Equine morbillivirus)
 • 1996 Australian bat Lyssavirus (Rhabdovirus)
 • 1997 Menangle virus (paramyxovirus)
 • 1997 Influenza virus H5N1 (Hong Kong)
 • 1998 Nipah virus (Paramyxovirus)
 • 1999 Influenza virus H9N2 (Hong Kong)
 • 2003 SARS (Coronavirus)
Emerging Infectious Diseases

- Major Factors Contributing to the Emergence of Infectious Diseases
 - Human demographics and behavior
 - Technology and Industry
 - Economic Development and Land Use
 - International Travel and Commerce
 - Microbial Adaptation and Change
 - Breakdown of Public Health Measures
 Institute of Medicine Report, 1992
 - Bioterrorism

Speed of Global Travel in Relation to World Population Growth

Reasons for emergence or re-emergence of zoonoses

Human population increase leading to an increased number of contacts between humans and infected animals.
Emerging Zoonoses

Estimated Global Mobile Population

- **International Travelers**: 698 million (WTO, 2000)
- **Migrant Workers**: 70-80 million (ILO, 2001)
- **Refugees/Uprooted People**: 22 million (UNHCR, 2002)
- **Undocumented Migrants**: 10-15 million (ILO, 2000)
- **Migrant Victims of Trafficking**: 0.7 million (IOM, 2001)

SARS PANDEMIC, Spring 2003:

Spread of a new Infectious agent through international flights.

« *Infectious Diseases will continue to emerge... »

More than 30 new infectious diseases caused millions of deaths since the mid 1970's. As for SARS, epidemiological surveillance is critical (Ebola, Africa; Avian Flu A/H7N7, Netherlands, etc.)
Coronavirus

Spread of a new Infectious agent through international flights.

In 2000, 27 million Americans travelled abroad:
- 9% visited a National Park,
- 5% camped or hiked,
- 5% visited sites of ecological interest, and
- 2% (540,000) traveled to Africa.

Incidence of Rickettsial Spotted fever was 14 cases per million for travelers to Africa. By comparison, incidence of Rocky Mountain Spotted Fever in the USA is only 2 cases/million population.
Influenza A Pandemic 1918-19

Major Epidemics will come back

Influenza pandemics* and recent outbreaks, 1918–2002

<table>
<thead>
<tr>
<th>Year</th>
<th>Colloquial name & subtype</th>
<th>Affected age group</th>
<th>No. deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1918*</td>
<td>Spanish flu (H1N1)</td>
<td>all ages</td>
<td>40 million</td>
</tr>
<tr>
<td>1957*</td>
<td>Asian flu (H2N2)</td>
<td>> 65 and < 5</td>
<td></td>
</tr>
<tr>
<td>1968*</td>
<td>Hong Kong flu (H3N2)</td>
<td>> 65 and < 5</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>Swine flu (H1N1)</td>
<td>all ages</td>
<td>1</td>
</tr>
<tr>
<td>1997</td>
<td>Chicken flu (H5N1)</td>
<td>all ages (18 cases)</td>
<td>6</td>
</tr>
<tr>
<td>2003</td>
<td>Chicken flu (H5N1)</td>
<td>all ages (4 cases)</td>
<td>2</td>
</tr>
<tr>
<td>?</td>
<td>Naturally occurring pandemics inevitable</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>Deliberately caused, highly lethal outbreak feasible</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

4.5 million
H5N1- Influenza outbreak Hong Kong 1997-1998

One million chickens were destroyed
Imports from mainland China were stopped
Shortage of poultry occurred in HK

Infectious diseases spread to new areas

Cumulative number of reported HIV cases in the Russian Federation, 1987-2001 (as of June 2001)

- 0
- 20,000
- 40,000
- 60,000
- 80,000
- 100,000
- 120,000
- 140,000

Number of cases: 0 20,000 40,000 60,000 80,000 100,000 120,000 140,000

Russian Federation AIDS Centre
Suspected Ebola Cases, by exposure date, Gabon 1996

- **Direct exposure to chimpanzee**
- **Week 1**: 24-30 Jan. (24 cases)
- **Week 2**: 31-7 Feb. (7 cases)
- **Week 3**: 8-14 Feb. (4 cases)
- **Week 4**: 15-21 Feb. (9 cases)
Ebola hemorrhagic fever, Kikwit, Zaire, 1995 transmission pattern

January February March April May June July

Total cases = 316
Total deaths = 245 (77%)

International Notification early May

Emerging Infections: Technology and Industry
Increased International Trade of Agricultural Products.

Source: WTO, 2000

International trade of agricultural products multiplied by 5 since 1950

Emerging Zoonoses

Food-Related Illness and Death in the United States
(Mead et al., EID, 1999)

It is estimated that annually food borne diseases cause approximately:

• 76 million illnesses
• 325,000 hospitalizations
• 5,000 deaths.
Emerging Zoonoses

Changes in the Factors that Contribute to the Epidemiology of Food-borne Diseases
(Osterholm, 2002)

• Diet
• Commercial food service
• New methods of food production
• New or re-emerging infectious agents
• Ethnic preferences
• “High-risk” populations, especially increase of immuno-compromised individuals (up to 20%)

Emerging Zoonoses

Factors Associated with the “Globalization” of Food-borne Diseases
(Osterholm, 2002)

• Water
• Animal feeds and manures
• Workers
• Transportation
• Rodents, other wildlife, insects
• Food processing
nVCJD and Mad Cow disease (BSE)

• nvCJD newly discovered in the UK in 1995
• Fatal progressive neurodegenerative disease
• Age - 13 and 52 years of age
• BSE and nvCJD are caused by the same agent
• BSE epidemic in cattle was caused by BSE-contaminated MBM and source of exposure for humans is food
• No test to detect agent in food or living asymptomatic animals
• To control nvCJD, control the BSE epidemic
BSE and nvCJD: Potential Exposure through International Trade in the early 1990s

- Meat and Bones
- Live cattle
- Cattle feed and Beef meat for human consumption
- Blood and derivated blood products
- Pharmaceutical and Cosmetic products

Rift Valley fever Rift, Yemen et Saudi Arabia, Sept.– Oct. 2000

Infected Area
Emerging Infections: Economic Development and Land Use

Raccoon Rabies, United States, 1977-1999
(Source: F.A. Murphy, UCD)
Infectious diseases spread to new areas

Increasing occurrence of Human Monkeypox in DR Congo, 1970-2001

1970-1980

48 cases

1981-1986

338 cases

1996-2002

1,705 cases

Number and percentage of laboratory confirmed monkeypox cases, USA, 2003 (71 cases, 35 lab confirmed)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No.</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois (12)</td>
<td>8</td>
<td>(23)</td>
</tr>
<tr>
<td>Indiana (16)</td>
<td>7</td>
<td>(20)</td>
</tr>
<tr>
<td>Kansas (1)</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>Missouri (2)</td>
<td>2</td>
<td>(6)</td>
</tr>
<tr>
<td>Wisconsin (39)</td>
<td>17</td>
<td>(49)</td>
</tr>
<tr>
<td>Age Group (yrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-18</td>
<td>11</td>
<td>(31)</td>
</tr>
<tr>
<td>19-51</td>
<td>24</td>
<td>(69)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>18</td>
<td>(51)</td>
</tr>
<tr>
<td>Male</td>
<td>17</td>
<td>(49)</td>
</tr>
</tbody>
</table>

Exotic Pets and Translocation

Monkeypox, USA, 2003
Exotic Pets and Translocation

Monkeypox, USA, 2003

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No.</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible sources of monkeypox exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie dog(s)</td>
<td>14</td>
<td>(40)</td>
</tr>
<tr>
<td>Prairie dog(s) & human cases</td>
<td>14</td>
<td>(40)</td>
</tr>
<tr>
<td>Premises housing prairie dogs</td>
<td>6</td>
<td>(17)</td>
</tr>
<tr>
<td>Premises housing prairie dogs and human cases</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>Clinical features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>34</td>
<td>(97)</td>
</tr>
<tr>
<td>Fever</td>
<td>29</td>
<td>(85)</td>
</tr>
<tr>
<td>Respiratory symptoms</td>
<td>27</td>
<td>(77)</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>24</td>
<td>(69)</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>16</td>
<td>(46)</td>
</tr>
</tbody>
</table>

Monkeypox virus: Cell culture, human, negative stain
Child, Marshfield Index Case: Primary inoculation site right index finger, 5/27/03. 14 days after prairie dog bites, 11 days after febrile illness, hospital day 5.

Child: Secondary lesions 5/27/03, adjacent to primary inoculation site on left hand.
Father, 6/05/03, after fevers, sweats, malaise on 5/31-6/01/03. Feels well.

Monkeypox, USA, 2003

Child, 6/5/03, resolving lesions.

Exotic Pets and Translocation

Monkeypox, USA, 2003

FIGURE 1. Number of monkeypox cases, by date of illness onset — Illinois, Indiana, Kansas, Missouri, Ohio, and Wisconsin, 2003*[^1]

[^1]: *N = 69 of 71 cases with known date of illness onset.*

[^1]: As of July 8, 2003.
Monkeypox virus: Animal Trace back

- All 35 confirmed human cases of monkeypox associated with prairie dogs obtained from an Illinois distributor (II-1) or animal distributors who purchased prairie dogs from IL-1.

- Prairie dogs (about 200) infected through contact with Gambian giant rats and dormice which originated in Ghana. 93 infected prairie dogs traced back to six states.
Monkeypox virus: Animal Trace back

- Introduction of monkeypox to USA: Texas animal distributor that had imported 800 small mammals from Ghana on April 9, 2003, containing 762 African rodents, including rope squirrels (*Funisciurius*), tree squirrels (*Heliosciurius*), Gambian giant rats, brushtail porcupines, dormice and striped mice.

Black flying fox

Fruit bat (*Pteropus alecto*)

Range: North to Papua New Guinea and eastern islands of Indonesia; South to New South Wales.

In 1996, this species and another the little red flying fox (*P. scapulatus*), were shown to carry a virus very closely related to rabies virus. Since then, flying foxes were also shown to carry the newly discovered Hendra and Nipah viruses.

(Source: F.A. Murphy, UCD)
Nipah virus, Malaysia, 1998

Deforestation, urbanization, increased pig production…..

Development of antibiotic Resistance

Multidrug-resistant Tuberculosis, 2001

Approximately 1% of all tuberculosis worldwide is multidrug-resistant
EMERGING, RE-EMERGING ZOONOSES

1. Dogs

• **Bacterial zoonoses:**
 - *Bartonella* infection
 - Leptospirosis
 - *Bordetella bronchiseptica* infection
 - Salmonellosis, Campylobacteriosis
 - Mycobacterial infections
 - Bites (*Capnocytophaga canimorsus*)

Protozoan zoonoses:
- Leishmaniasis (USA)
- Cryptosporidiosis
- Giardiasis

EMERGING, RE-EMERGING ZOONOSES

Leptospirosis

In the past: mainly serovars: *L. canicola*,
- *L. icterohaemorrhagiae*

Mid 1990s: Increased clinical cases in dogs in USA
 - **in California:** *L. pomona, L. bratislava*
 - **in Massachusetts, New Jersey, New York,**
 - **Michigan:** *L. grippothyphosa, L. pomona,*
 - *L. autumnalis*

Clinical changes: acute renal failure rather than hepatic insufficiency or coagulation abnormalities.
A Global Threat

*Leptospirosis outbreak among 312 participants, Eco Challenge 2000 *, Malaysia*

- Canada: 4
- USA: 10
- Brazil: 1
- Uruguay: 1
- Australia: 4
- UK: 9
- France: 4

Expedition race, multi-sport event, 20 August - 3 September 2000, Sabah, Malaysian Borneo

EMERGING, RE-EMERGING ZOONOSES

2. **Cats**

- **Bacterial zoonoses:**
 - *Bartonella* infection
 - *Helicobacter* infection
 - Salmonellosis, Campylobacteriosis
 - Plague (*Yersinia pestis*)
 - Mycobacterial infections
 - Bites (*Capnocytophaga canimorsus*)
 - *Chlamydia* infection

- **Viral zoonoses:**
 - Cowpox (U.K.)

- **Protozoan zoonoses:**
 - *Toxoplasma gondii* infection
 - Cryptosporidiosis
 - Giardiasis
EMERGING, RE-EMERGING ZOONOSES

3. Other pets

- **Bacterial zoonoses:**
 - *Salmonella* infections and reptiles
 - *Salmonella* infections and pet Hedgehogs
 - *Streptococcus iniae* and fish
 - *Campylobacter* and ferrets

- **Viral zoonoses:**
 - Lymphochoriomeningitis and hamsters

Reptile-associated Human *Salmonella* History

1944 First *Salmonella* sp. isolate from snakes.
1946 First *Salmonella* sp. isolate from turtles and lizards.
1963 Turtle-associated salmonellosis first described.
1972 FDA regulation requiring certification of turtles for sale as "Salmonella-free."
1974 Study shows 300,000 turtle-associated human salmonellosis cases per year in U.S.
1975 FDA bans sale of viable turtle eggs or live turtles with carapace length < 10.2 cm.
1977 CA State regulations ban sale, as above.
Number of Salmonella Marina Isolates Reported Annually and Number of Iguanas Imported Annually

Pediatrics 1997;99:399-402
New and Exotic Pets, Hunting Pens and Game Translocation

- **Translocation of infected animals:**
 - bats and rabies
 - Exotic pets (Gambian Rats) and Monkeypox
 - brucellosis and reindeer
 - echinococcosis and foxes

- **Translocation of susceptible animals:**
 - ostriches and emus and Western Equine Encephalitis

- **Hunting pens:** rabies and raccoons

- **New and exotic pets:**
 - salmonellosis and iguanas, African pygmy hedgehogs
 - Egyptian bats and rabies
Emerging Zoonoses

Emerging Bacterial Zoonoses and the Immunocompromised Individuals.

- Salmonellosis, Campylobacteriosis
- *Rhodococcus equi, Bordetella bronchiseptica*
- Bacillary angiomatosis (*Bartonella henselae, B. quintana*)
- Fish tank Granuloma (*Mycobacterium marinum*)
- Dog bites (*Capnocytophaga canimorsus*)

Infectious agent: *Capnocytophaga canimorsus* (formerly DF-2, dysgonic fermenter). Commensal organism within the oral cavity of the dog (16%). Fastidious Gram negative rod.

Epidemiology

C. canimorsus is a common bacterium present in dog mouth. 103 human cases reported between 1976 and 1996. Following dog (91%) or cat (8%) exposure, mainly bites (54%) or scratches (8%).

Underlying conditions: 61% of cases >50 year-old, splenectomy (33%), alcoholism (24%), neoplastic/ hematologic disease, immunosuppression (5%).
Dog Bites *Capnocytophaga canimorsus*

Clinical signs
- No major sign in non-immunocompromised patients
- Septicemia, shock, disseminated intravascular coagulation in immuno-compromised patients

Clinical features
- Fever (90%), septicemia (94%), septic shock (40%), disseminated intravascular coagulation (32%), meningitis (13%), renal failure (15%), gangrene (14%), thrombocytopenic purpura (14%), cardiopathy (11%), ARDS/Pneumonia (10-12%), endocarditis (7%)….

Letality: 30%

Emerging Zoonoses: Why Now?
- Better tools for diagnosis of fastidious organisms: The Molecular Microbiology Revolution: Hantavirus, Bartonella, etc…
- Epidemiological studies, outbreak investigation
- Surveillance systems: Hantavirus, influenza, leptospirosis, Hendra and Nipah viruses.
- Wildlife studies have revealed new pathogens; new studies done on interaction between wildlife reservoir and domestic animals/humans
- Increased interest in vector borne diseases i.e., tick-borne infections: Ehrlichioses, Lyme, etc.
A global threat

A new reality

- The risk of deliberate release of infectious agents to cause harm.

Biotechnology is becoming widely available, while world tensions and conflicts remain.

Emerging Infectious Diseases: different risks, different response

From mad cows to chickens, primates and bats
Emerging Zoonoses

- Knowing is not enough; we must apply.
- Willing is not enough; we must do.

(Goethe)

Emerging Zoonoses: Control and Prevention

- Recognition
- Investigation
- Collaboration: Interagency structures
- Advanced structures for diagnosis & surveillance
- International & interdisciplinary interventions
- Applied epidemiological and ecological research: Field-trained specialists: Epidemic Intelligence Veterinary Public Health Officers
- Education: Training, technology transfer
- Information/Communication
Emerging Zoonoses: Control and Prevention

• **Recognition**: Emerging zoonotic infections first need to be identified.

Traditional approach: identification of a human health problem leading to identification of problems in domestic or wild animal populations (i.e. Rift Valley fever, Q fever, chlamydiosis).

New approaches: identification of a health problem in animals that could be associated with human disease (West Nile virus, USA, 1999).

 investigation of potential pathogens in wildlife leading to identification of new reservoirs: Lyssavirus in bats, Australia, *Brucella* spp. in marine mammals.

Emerging Zoonoses: Control and Prevention

• **Investigation**

 Collaborative field work of multidisciplinary teams with the support of expert staff scientists and advanced laboratories with molecular biological and immunological technologies.

 “Shoe-leather” epidemiology initially to determine main risk factors and potential reservoirs, leading to preventive measures: Hantavirus, Americas, Nipah virus, Malaysia.

New approach: Inventory of pathogens carried by various wildlife species, especially when encroached with human habitat: opossums reservoirs of *Rickettsia felis*, murine typhus, *sarcocystis neurona*.
Disease Surveillance Networks in Asia

- Mekong Basin Disease Surveillance (MBDS)
- Pacific Public Health Surveillance Network (PPHSN)
- APEC
- SEAMIC
- ASEAN
- SEANET
- EIDIOR

Monitoring the Temporal Patterns of Cholera Transmission Risk

AvHRR
AvHRR-SST
TOPEX-SSA
SeaWiFS-Chl-a
Emerging Zoonoses: Control and Prevention

- Collaboration: Interagency Structures

- Need for a scientific bridge between various disciplines: zoology, ecology, ornithology, geography, veterinary and human medicines... as illustrated by the early “West Nile fiasco” bird disease? or human disease?... Which agency is in charge?

- Interface between Public Health and Veterinary Public Health at local, national and international levels.

Need for Applied and Basic Research in Emerging Infectious Diseases

- Biology
- Informatics
- Nanotechnologies
- Mathematics
Emerging Zoonoses: Control and Prevention

• Advanced structures for diagnosis and surveillance, international and interdisciplinary interventions: Know-How, availability and flexibility

• Applied epidemiological and ecological research: Field-trained specialists: Epidemic Intelligence Veterinary Public Health Officers
 Fellowships, training grants, PhDs

• Develop training in molecular epidemiology:
 The microchip revolution: on site instantaneous multitests

The need for infectious disease control: 2003

• The right balance between:
 – Unknown infectious disease risks: stockpiling and distribution systems of drugs and vaccines for deliberately caused infectious diseases
 – Known infectious disease risks: increasing access to drugs and vaccines and strengthening national capacity for prevention and control
Emerging Zoonoses: Control and Prevention

- **Education:** Training, technology transfer.
- **Information/Communication**
 - Enhance communication of information
 - Use diverse communications methods
 - Establish partnerships to ensure rapid implementation of prevention measures
 - An on-line journal for new and emerging disease information

(Source: F.A. Murphy, UCD)

Influenza A(H5N1), Hong Kong 1997: a first attempt at global surveillance and pandemic planning

- **Unknown influenza virus isolated**
- **Virus identified, WHO Collaborating Laboratories (Netherlands/CDC)**
- **Epidemiological investigation and containment, humans and poultry in Hong Kong; intensified surveillance worldwide**
- **Preparation for vaccine production WHO Collaborating Laboratories**

- May 1997
- August 1997
- September 1997 to January 1998
- September 1997 to April 1998
Emerging zoonoses: Conclusions

- Not major killer or disabling diseases -
- transmission cycles complex - animal reservoirs control and elimination difficult
- no top priorities for public health
- medical impact in terms of morbidity & mortality underestimated in all countries
- recognised potential for global spread
- economic impact considerable
- social impact significant
- consequences on public health enormous

Control and Prevention of Emerging Zoonoses:

CONCLUSIONS

- Discovery-to-control continuum: discovery/recognition, epidemiologic field investigation, etiologic investigation, diagnostics development, focused research, technology transfer, training and outreach, prevention, control and elimination, if possible.
- What made it possible? Better diagnosis tools, awareness (especially of the wide wildlife reservoir), readiness, establishing surveillance systems, collaboration and technology transfer.
- What should be next? Increased awareness and improved curriculum in VPH/ Zoonoses for DVM students. Develop a group of field-trained specialists.

- A rapid communication system
- A wide-ranging legal authority
- A way to get full participation of everyone involved and to deal with “turf battles” (who gets the credit?)
- A coordinated response to the media and a professional response to public misperceptions
- A progressively redefined case definition (for clinical and epidemiological purposes)
- A locally updated clinical management guidelines
- A locally updated biosafety management guidelines
- Reagents and diagnostic technology transfer to local sites
- A way to shift from emergency to regular response mode.