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Abstract

We develop a Bayesian approach to sample size computations for surveys de-

signed to provide evidence of freedom from a disease or from an infectious agent.

A population is considered “disease-free” when the prevalence or probability of

disease is less than some threshold value. Prior distributions are specified for

diagnostic test sensitivity and specificity and we test the null hypothesis that

the prevalence is below the threshold. Sample size computations are developed

using hypergeometric sampling for finite populations and binomial sampling

for infinite populations. A normal approximation is also developed. Our pro-

cedures are compared with the frequentist methods of Cameron and Baldock

(1998a) using examples of foot-and-mouth disease and bovine paratuberculosis.

User friendly programs for sample size calculation and analysis of survey data

are available at

http://www.epi.ucdavis.edu/diagnostictests/download-bayesfreecalc.html.

Keywords: Bayesian, Sensitivity, Specificity, Prevalence, Gibbs Sampling, Hyperge-
ometric distribution, Prediction, Risk analysis
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1 Introduction

Establishing that populations are free from important pathogens is vital in many

applications including animal disease control. Typically, this involves sampling the

population using a survey. It is crucial that these samples be large enough to draw

appropriate inferences. Sample size computations were developed by Cannon and Roe

(1982) for perfect diagnostic tests. These were modified by Cameron and Baldock

(1998a) to incorporate known sensitivities and specificities. Clearly, the sensitivity

and specificity of most tests are uncertain. For example, in bovine paratuberculosis an

expert’s best guess for the sensitivity of serologic testing was 45% with the belief that

the sensitivity could easily be as high as 55%. Thus the assumption of known test

characteristics is clearly untenable. We extend the work of Cameron and Baldock

(1998a) and Cannon (2001) using a Bayesian approach that explicitly models the

uncertainty in the sensitivity and specificity, as well as modeling information about

the prevalence. We consider sampling only from a single homogeneous population.

Because of the complexity of their method, Cameron and Baldock (1998b) pro-

vided a widely disseminated computer program, FREECALC. Our software is also

freely available on the internet.

Our approach to sample size selection extends the work of Geisser (1992). His

predictive approach is detailed in section 3. Alternative Bayesian approaches are

based on (1) achieving specified estimation coverage subject to minimizing an average

(over future samples) length criterion, see Joseph, Berger and Belisle (1997) or Zou

and Norman (2001), (2) minimizing Bayes risk, see Halpern, Brown and Hornberger

(2001) or Müller and Parmigiani (1995), and (3) achieving a Bayes factor that exceeds

a selected critical value under the hypothesis of interest, see Weiss (1997). Rahme,

Joseph and Gyorkos (2000) addressed the problem of assessing sample size in the
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infinite population case, as considered here, when the Bernoulli components of the

binomial were subject to error. Their sample size criterion was to find the smallest

n that gave a specified average (or predictive) coverage probability for intervals of

specified length for the disease prevalence. Our approach focuses on the posterior

probability that the disease prevalence is below a threshold and then predicts the

probability of obtaining data that will make this posterior either large enough to

conclude that the infection is under control or small enough to conclude that it is out

of control.

Although our examples focus on veterinary medical applications, our methods

are also applicable to human populations. For example, one may be interested in

determining whether the prevalence of HIV, Dengue fever, or babesiosis is above a

threshold beyond which some intervention is to be instituted. Alternatively, some

companies may be required to guarantee that it’s employees are essentially “drug-

free.”

In sections 2 and 3 we present background material and the proposed sample

size methodology. In section 4 we compare our method with that of Cameron and

Baldock (1998a) using foot-and-mouth disease, and present an example based on

bovine paratuberculosis. Some theory on the behavior of the sample size calculations

is developed in section 5. Final conclusions and a discussion of our software are given

in section 6. Technical details are presented in the appendix.

2 Background Material

The presence of an infectious agent is denoted D. Let π = pr(D) denote the “preva-

lence,” that is, the proportion of diseased individuals in the population. Suppose that
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n individuals are randomly sampled from a population. Each individual is tested for

D. A positive result is denoted + and a negative −. Let T+ denote the number

of test-positive results out of n. If the sample is with replacement from an infinite

population and the test makes no errors, T+ is binomial, that is, T+ ∼ Bin(n, π). If,

for a perfect test, sampling is without replacement from a finite population of N in-

dividuals containing d diseased individuals, then π = d/N and T+ is hypergeometric,

T+ ∼ Hyp(N, d, n).

The problem is to use T+ to determine whether the prevalence of infection, π, is

at or below a threshold, say, π0. If π ≤ π0, no intervention is made in the population,

while if π > π0, the disease is considered “out of control” and measures would be taken

to reduce the prevalence. Clearly, a decision must be made between H0 : π ≤ π0,

and H1 : π > π0.

In practice, diagnostic tests are imperfect. The sensitivity of a test is the proba-

bility that it correctly diagnoses diseased patients, say, η = pr(+|D). The specificity

is the probability that the test correctly diagnoses healthy individuals, θ = pr(−|D̄).

In the infinite population case, T+ ∼ Bin(n, πη + (1 − π)(1 − θ)). The distribution

is more complicated for finite populations and is given in expression (10) of the ap-

pendix. The number T+ is being used to derive estimates of π, η, and θ. Prior

information plays a crucial role in the analysis, see Johnson, Gastwirth and Pearson

(2001).

Uncertainty about unknown parameters is modelled with independent probabil-

ity distributions for the parameters, see Johnson and Gastwirth (1991) and Johnson,

Gastwirth and Pearson (2001). For the sensitivity and specificity, we use beta distri-

butions η ∼ Beta(aη, bη) and θ ∼ Beta(aθ, bθ). For the infinite population case, we

take π ∼ Beta(aπ, bπ).
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For the prevalence in finite populations, we use a discretized version of a beta. The

prevalence is the unknown value π = d/N , which is restricted to the set {0, 1/N, 2/N, . . . , 1}.

We begin with a beta prior having a ≥ 1 and b ≥ 1. When a > 1 and b > 1, we use

priors that assign to j/N the probability from the beta associated with the interval

j/N ± 1/2N . Obvious accommodations are made for j = 0, 1. If a = 1 or b = 1

we use a distribution based on renormalizing the beta densities evaluated at j/N . In

the following, we discuss probabilities for infinite populations. Modifications for the

discrete case are clear.

Prior information on test accuracies may be derived from published studies or from

expert opinion. For example, a validation study of 100 subjects that estimates sen-

sitivity as 0.95 can be modeled as a Beta(96, 6) distribution, see Gastwirth, Johnson

and Reneau (1991).

The prior on the prevalence involves information about the specific population.

For example, if the population is a herd of cattle, information on prevalence is available

from the owner and the herd veterinarian. Alternatively, it may be desirable to

consider a relatively non-informative prior for prevalence.

To elicit expert opinion for prior distributions, the expert might be asked for the

most likely value, m, and for one percentile. These determine a beta distribution that

satisfies the constraints. The mode of a Beta(a, b) distribution is m = (a − 1)/(a +

b − 2), provided a, b > 1. For given m, the value of a is a function of b, say a(b),

so the distribution becomes Beta(a(b), b). We then either elicit a value l such that

P (π > l) = α or a value u such that P (π < u) = α and numerically determine the

value of b so that a Beta(a(b), b) satisfies the probability statement. If the mode is

zero or one, we use Beta(1,b) or Beta(a,1) distributions, respectively, along with a

probability statement. Our software automatically handles this type of elicitation.
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Sometimes the elicitation involves the specification of three conditions, say a mode

and two probability statements, in which case we try to find the “best” fitting beta

distribution by trial and error. In all cases the prior as determined by the statistician

is reconfirmed with the expert as being a reasonable approximation to their opinions.

Bedrick, Christensen, and Johnson (1996, 1997) used similar elicitation techniques.

For a given sample size n, the posterior density for π is

pn(π|x) =

∫ 1

0

∫ 1

0
Pn(T+ = x|π, η, θ)p(π)p(η)p(θ)dηdθ∫ 1

0

∫ 1

0

∫ 1

0
Pn(T+ = x|π, η, θ)dF (π)p(η)p(θ)dηdθ

, (1)

where F (·) is the CDF for π and
∫

dF (π) denotes Lesbesgue-Stieltjes integration.

The posterior is approximated using Gibbs sampling for the binomial problem. The

full conditional distributions (9) appear in the first appendix. For finite population

problems, the discrete density (mass function) for d ≡ Nπ is given in (11).

Primary interest focuses on

Pn(π ≤ π0|T+ = x) ≡ Pn(π ≤ π0|x). (2)

The null hypothesis is accepted if this is at least some value p0 between 0 and 1. The

largest value of x∗ that results in Pn(π ≤ π0|x∗) ≥ p0 is called a critical value and is

denoted xc0 ≡ xc0(n). The alternative is accepted if the complementary probability is

greater than p1 ≥ 1− p0. The smallest value of x∗ that results in Pn(π > π0|x∗) > p1

is a critical value denoted xc1 ≡ xc1(n). Unless p1 = 1− p0, this procedure provides a

range in which neither hypothesis is accepted. Making both p0 and p1 large ensures a

high probability of being correct for both actions. Some combinations of n, p0, and p1

may make taking some actions impossible. Note that when p1 = 1−p0, xc1 = xc0 +1,

unless xc1 = 0 or xc0 = n.
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3 Predictive Sample Size Determination

Following Geisser (1992), we develop Bayesian predictive criteria for determining a

sample size. The first criterion calculates the predictive probability of being able to

make a correct decision in favor of the null. The goal is to find the sample size such

that this predictive probability exceeds a pre-specified value, say β0 = 0.95. The

second criterion involves a similar calculation for “proving” the alternative.

The sample size needed to obtain a correct conclusion depends on the true preva-

lence. Rather than averaging over the prevalence, we develop sample sizes as a func-

tion of the true prevalence. In “proving” that the null hypothesis is true, we presume

that there is a “true” value of π, say πT with πT < π0. We calculate the predictive

probability

p̃n0 ≡ P ∗
n{Pn(π ≤ π0|x∗) ≥ p0|πT} =

n∑
x∗=0

I{Pn(π≤π0|T+=x∗)≥p0}(x
∗)P ∗

n(T+ = x∗|πT ),

(3)

where the calculation uses the distribution of future data T+ = x∗ of size n, i.e.,

P ∗
n(T+ = x∗|πT ) =

∫
Pn(T+ = x∗|πT , η, θ)p(η, θ)dηdθ,

which can either be botained exactly or by Monte Carlo integration. In our examples,

we generally select πT = 0. More generally, πT should be taken as a value for which

the scientist wants to be confident of a correct decision. The closer πT is to π0, the

more difficult it will be to satisfy the criterion. Finally, we search for the smallest

value of n for which we are β0×100% certain that we will be able to make a decision,

namely, find n such that p̃n0 ≥ β0.

The second situation corresponds to the goal of “proving” the alternative hypoth-

esis H1 : π > π0 when it is true. Thus πT is selected as a value that is of particular
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interest to the scientist with πT > π0. The calculation involves finding n such that

p̃n1 ≡ P ∗
n{Pn(π > π0|x∗) > p1|πT} ≥ β1. (4)

In the two situations, the required sample size is represented as

nci ≡ arg min
n

(p̃ni ≥ βi) . (5)

There are situations where one can determine in advance that it would be impossible

to achieve these criteria. These are discussed in the examples and section 5. If both

null and alternative criteria are of interest, the selected value of n is simply the larger

of the resulting two values, nc ≡ maxi (nci) .

Finding a single value nci is computationally intensive, but theoretically one could

obtain nci(π) for π ∈ [0, 1]. Using the prior p(π), it is also natural to consider

nBi =

∫
Hi

nci(π)p(π|Hi)dπ,

where p(π|Hi) is the conditional density for π given Hi. One could then obtain

nB = max
i

(nBi) or n∗
B = P (H0)nB0 + P (H1)nB1,

where P (Hi) is the prior probability of Hi. Note that if P (H0) is large, nc0(π)

should be small for all π in H0, so nB0 should be small. In the limit, if P (H0) = 1,

n∗
B = nB0 = 0, whereas no amount of data would make us decide for the alternative.

In our computations, we use a starting value for finding n that is based on a normal

approximation to the binomial. This approximation uses the variance stabilizing

(arcsin square root) transformation of the binomial proportion T+/n. (See appendix

for details.) The normal approximation is extremely fast and, for some situations,

quite accurate. When N is moderate or large, the normal approximation also serves

as a first approximation to the hypergeometric model.
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4 Illustrations

We illustrate our methods using two examples from Cameron and Baldock (1998a),

(CB). While these involve animal infections our results apply more broadly. Thresh-

olds π0 and population sizes N are selected in the ranges 0.05-0.30 and 50-500, respec-

tively. These inputs are typical for the populations considered. For finite populations,

NπT should be an integer; if not, we redefine πT by rounding NπT . The methods also

apply when screening test performance is known without error (e.g. take aη, bη, aθ,

and bθ to be large with appropriate modal values).

4.1 Foot-and-Mouth Disease (FMD)

This example compares our results to CB’s. Consider an enzyme-linked immunosor-

bent (ELISA) test with unknown sensitivity and specificity that is available for testing

cattle herds of N = 50, 265 and 500 animals that show no clinical evidence of FMD.

We take πT to be zero or 0.3 for the null and alternative calculations, respectively.

Prior information is used to model the uncertainty in test performance. Our

expert (Angus Cameron) is 90% sure that the sensitivity is greater than 0.9 and that

the specificity is greater than 0.95. His prior modes are 0.95 and 0.98, respectively.

These constraints lead to Beta(68.74, 4.57) and Beta(107.2, 3.17) priors for sensitivity

and specificity, respectively. A uniform distribution is assumed for the prevalence.

This attaches prior probability π0 to H0 and probability 1 − π0 to H1. For a highly

virulent disease such as FMD that displays overt clinical signs, the absence of such

signs may provide strong a priori evidence that disease is not present. This might

justify giving greater weight to the null hypothesis. A Beta(1,b) distribution attaches

prior probability 1− (1− π0)
b to H0.
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In comparing our approach to CB’s, their null and alternative hypotheses are

reversed from ours since they are most concerned with not making the Type I error

of concluding that the prevalence is “small” when in fact it is not. For CB (both

veterinary epidemiologists) the status quo was that the prevalence will be large. They

would plan to intervene unless there was statistical proof that it was unnecessary. To

mimic that behavior, we focus on finding sample sizes nc0 to prove low prevalence.

To illustrate the comparison, we use p0 = 0.95 which is an intuitively appealing value

but bears no direct relationship to CB’s procedure.

To use CB’s method, we fixed the probabilities of Type I and Type II error at 5%,

and assumed the known sensitivity and specificity to be 0.95 and 0.98, respectively.

These are the modal values of our prior distributions for η and θ. The “minimum

expected prevalence” (MEP) is defined by CB to be the smallest prevalence that

is anticipated by veterinarians among those herds that they consider to be having

problems with the infection. We treat the MEP like our π0. CB’s procedure produces

critical values x∗c and sample sizes n∗
c so that both {1−P (Type II error)} = Pn∗c (T

+ ≤

x∗c |π = 0, η = 0.95, θ = 0.98) ≥ 0.95 and P (Type I error) = Pn∗c (T
+ ≤ x∗c |π = π0, η =

0.95, θ = 0.98) ≤ 0.05 hold.

For N = 265 and π0 = 0.1, CB’s method generates n∗
c = 64, x∗c = 3. To make a

direct comparison to Bayesian procedures we found P64(π ≤ 0.1|3) = 0.962. Thus,

for n = 64, our Bayesian procedure that accepts H0 when P64(π ≤ 0.1|x) ≥ 0.962 is

identical to CB’s α = .05 test. Moreover, for p0 = 0.962, the predictive probability,

when πT = 0, of accepting H0 is p̃64,0 = 0.85, which is loosely comparable to the 95%

power of the CB procedure. Using p0 = 0.962, we require a sample size nc0 = 128

to achieve our 95% certainty of accepting H0 when πT = 0. For n = 64 with p0 =

0.95, because the data are discrete, the predictive probability under πT = 0 remains
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p̃64,0 = 0.85. Nonetheless, using p0 = 0.95, rather than 0.962, we require a smaller

sample size, nc0 = 102, to achieve a predictive probability of β0 = 0.95.

Table 1 presents results comparing our null and alternative approaches using p0 =

p1 = 0.95 with the CB method. Our criteria can be considerably more stringent

than that used by CB. This, along with our incorporation of uncertainty into the

sensitivity and specificity, can cause our sample sizes to be larger than CB’s. Also

note in Table 1 that there is very little change in the Bayesian numbers for the null

among N = 265, N = 500, and the binomial when π0 ≥ 0.15. For the alternative,

all of the Bayesian procedures are reasonably close when π0 < 0.15. (This being less

so for N = 50.) Similar observations held for other calculations made under other

circumstances.

Figures 1 and 2 give plots of sample size, n, versus p̃n0 for the binomial, hyper-

geometric, and normal null calculations, with the same priors that were given for

this example, and for thresholds π0 between 0.05 and 0.3. For larger thresholds, the

normal approximation can be quite reasonable. The saw-tooth shape of the plots, a

result of the discreteness of T+, is discussed in Chernick and Liu (2002). We clarify

this behavior in section 5.

Although our priors for η and θ involve reasonably strong prior information, we

also tried a considerably more concentrated prior: 0.98 prior probability that sensi-

tivity and specificity are at least 0.94 and 0.97, respectively, with the same modes;

0.95 and 0.98. With p0 = β0 = .95, a sample of size n = 72 yielded p̃n0 = 0.98 (with

n = 70 p̃n0 = 0.93) based on a null calculation, which is much closer to the CB value

of 64. Therefore, assuming known sensitivity and specificity can have a large effect

on the sample size calculation.
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4.2 Bovine Paratuberculosis

Typically, in cattle herds infected with paratuberculosis, prevalences are lower than

30%. Certification of disease free status is complicated by the low sensitivity of

serum ELISA and other tests. Recent evidence (Whitlock et al., 2000) confirms an

earlier report by Ridge et al. (1991) that the ELISA sensitivity is lower than 60%. We

elicited expert opinion about the sensitivity of the ELISA in stage II paratuberculosis

from an expert (Michael Collins, University of Wisconsin, Madison). His mode for the

sensitivity was 0.45, and his 90% upper limit was 0.55, resulting in a Beta(19.34, 23.41)

distribution. Similarly, his mode and 10% lower limit for specificity were 0.99 and

0.97, respectively, yielding a Beta(152.08, 2.53) distribution. We used a uniform prior

for π.

For N = 50 with a threshold of π0 = 0.1, using p0 = 0.95, and sampling the entire

population there is only about a 50% chance of accepting H0 when πT = 0 and an

80% chance of accepting when the threshold is π0 = 0.2. With πT = 0.2, π0 = 0.05,

and p1 = 0.95, there is about an 80% chance of accepting H1. Raising the threshold

to π0 = 0.1 and keeping p1 = 0.95, it is impossible to accept H1, but with p1 = 0.90,

there is about a 50% chance of accepting H1.

With N = 265, π0 = 0.1 and pi = 0.95, it is not possible to achieve the βi = 0.95

null or alternative criteria. By sampling the entire population, we can only establish

about a 90% chance of accepting H0 when πT = 0 and, even by lowering p1 to 0.9,

an 83% chance of accepting H1 when πT = 0.2. For this latter situation, sampling

only 100 animals results in a 70% probability of accepting H1. These calculations

illustrate the fact that our criteria may not be achievable.

With N = 500, π0 = 0.1 and p0 = 0.95, we can achieve a 90% chance of accepting

H0 when πT = 0 with n = 350. Sampling all n = 500 animals only results in
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p̃n0 = 0.93. On the other hand, if π0 = 0.2, a sample of only n = 113 gives a 95%

chance of accepting the null. The normal approximation is much better for the null

calculation when the threshold is 0.2 than when it is 0.1.

Sample size results are given in Table 2. For the null and alternative, minimum

samples sizes nci are given for p0 = p1 = 0.95 and β0 = β1 = 0.95 when possible.

When the criteria are not attainable, a variety of results are illustrated.

Finally, consider changing the prior on the prevalence. Suppose we are 95% sure

a priori that the prevalence is less than 0.10 and assume the mode of the prior is

zero. This results in a Beta(1, 28.46) prior. With all other information the same, let

π0 = 0.1 and p0 = 0.95. For N = 50 and a sample size of n = 50, p̃n0 = 0.93 as

compared to p̃n0 = 0.49 with the uniform prior. With N = 265, a sample of n = 110

results in p̃n0 = 0.96, whereas with the uniform n = 265 only gave p̃n0 = 0.89. For

N = 500 or an infinite population, n = 150 results in p̃n0 = 0.95 whereas with the

uniform it took a sample of n = 350 out of N = 500 to achieve p̃n0 = 0.90 and in the

infinite N case, n = 339 to achieve p̃n0 = 0.88. The normal approximation results in

n = 165.

5 Behavior of the Sample Size Calculations

We now give a result that can be used to develop efficient search procedures for finding

sample sizes and another that explicates the saw-toothed shape of p̃n0 in Figures 1

and 2. We provide a formal justification in the binomial case for the null hypothesis

procedure. The results are proved in the appendix.
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Proposition 1. In the binomial case, provided η + θ > 1 with prior probability 1,

Pn(π ≤ π0|x) > Pn(π ≤ π0|x + 1), x < n

Pn(π ≤ π0|x) < Pn+1(π ≤ π0|x), x ≤ n. (6)

In our experience, the results in Proposition 1 appear to also hold Hypergeometric

case, though we have not proven this analytically. Efficient search procedures based

on Proposition 1, and Proposition 2 below, can be devised. For example, for a given

n, check whether Pn(π ≤ π0|0) ≥ p0. If not, then n must be increased since there

is no possibility that the selected n will be appropriate. If this criterion is satisfied,

then the procedure will continue with increasing x until a critical value xc0 is obtained

such that Pn(π ≤ π0|xc0) ≥ p0 and Pn(π ≤ π0|xc0 + 1) < p0. For the given n, values

larger than xc0 result in posterior probabilities of H0 that are smaller than p0, thus

p̃n0 = P ∗
n(T+ ≤ xc0(n)|πT ). Moreover, by (6), we also have xc0(n) ≤ xc0(n + 1),

because Pn+1(π ≤ π0|xc0(n)) > Pn(π ≤ π0|xc0(n)) ≥ p0. Finally, using Proposition 2,

if xc0(n + 1) = xc0(n), then it is impossible to improve the sample size criterion by

increasing from n to n + 1.

Our programs for obtaining sample sizes are described in the discussion section

below, and our (crude) algorithms are presented in the appendix. The current version

of our program does not use these efficient methods for the binomial, but does use

them for the hypergeometric, if requested. Results are virtually identical using either

method.

The calculations to obtain (3) and (4) are different for the finite and infinite

population cases but both can be slow if n is large. Results can be obtained quickly

using our computer code for moderate N, n < 500 using an efficient search for the

n that achieves either criterion. However, with large n or N this search can take
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considerable time. We have obtained results for 500 < n, N < 1000 in reasonable

amounts of time using a simple trial-and-error approach. To execute this, a value of

n is posited and the corresponding value p̃ni is obtained. If p̃ni < βi, simply try a

larger n and continue until finding an n with p̃ni ≥ βi or you realize that βi can never

be achieved.

The saw-tooth behavior follows from

Proposition 2. Let m < n be given and define δT = πT η + (1− πT )(1− θ). Then

in the binomial case, and provided 0 < δT < 1 with probability one,

Pm(T+ ≤ x|πT , η, θ) = Pn(T+ ≤ x|πT , η, θ) + δT

n−1∑
k=m

Pk(T
+ = x|πT , η, θ). (7)

Moreover, with h∗n(x) =
∫

Pn(T+ ≤ x|πT , η, θ)p(η, θ)dηdθ,

h∗m(x) > h∗n(x), m < n, x ≤ m; h∗n+1(x1) > h∗n(x0), x0 < x1 ≤ n. (8)

For null calculations, suppose that x0 ≡ xc0(m) is the critical value for both m and

n > m. Then (8) implies that p̃n0 < p̃m0. It is only when x0 ≡ xc0(n) < xc0(n+1) ≡ x1

that p̃n+1,0 > p̃n0, by the second part of (8). Thus p̃n0 is decreasing in n until it gets

so low that the critical value is increased to x0 + 1, at which point p̃n0 jumps. This

is precisely the saw-tooth behavior that is exhibited in Figures 1 and 2.

6 Discussion

We developed a Bayesian sample size calculator for determining “disease-free-status”

in a single homogeneous population based on infinite or finite population sampling

when test parameters are unknown and where prior information on prevalence and

testing parameters are incorporated. Our methods work well over the dissimilar

examples considered.
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Because uncertainty about the sensitivity and specificity are incorporated into

the model, larger sample sizes are required than when these parameters are treated

as known. Table 1 indicates the need for larger sample sizes but we also showed

that precise knowledge of test accuracy resulted in sample sizes that were comparable

to those in CB. Since sensitivity and specificity are rarely, if ever, known precisely,

incorporating uncertainty about the test accuracies should give more realistic results.

Another factor in the larger sample sizes is that we incorporated more stringent

criteria for decision making than are imposed by CB. In practice, the values of pi and

βi should be chosen so that the required sample size is within the resources of the

experimenter.

The program developed to implement the calculations, BDFree 1.0, is coded in

Fortran with a Visual Basic graphic user interface (GUI). The parameters for the

beta priors are automatically calculated when one inputs the mode m along with

α and either l or u as described in section 2. For a given n, users can obtain p̃ni

based on all of our proposed methods. They can subsequently iterate by trial and

error until a suitable n is found that achieves the criterion or they can choose an

option whereby the program automatically determines nci. Our GUI indicates when

the criterion is not achievable. If a suitable n were selected and data subsequently

collected, the GUI can also be used to calculate the posterior probability of the null

for the given data. The beta version of the program is available on the web at

http://www.epi.ucdavis.edu/diagnostictests/download-bayesfreecalc.html.

Many pathogen surveys involve two-stage cluster sampling with selection of mul-

tiple subpopulations and then selection of a subset of individuals from each subpopu-

lation for testing, see Cameron and Baldock (1998b) or Suess, Gardner and Johnson

(2002). We are currently developing sample size methods for these designs.

15



Acknowledgements:

This research was partially supported by the USDA NRI Competitive Grants Program

award No. 01-02494. The authors thank Doctors Angus Cameron and Michael Collins

for providing expert opinion used to derive the prior distributions and Dr. Patrick

McInturff and Adam Branscum for their help in preparing the beta version of the

GUI and for their comments on the manuscript. We also thank an associate editor

and two referees for insightful comments that lead to a much improved manuscript.

References

Bedrick, E. J., Christensen, R., and Johnson, W. (1996). A new perspective on priors

for generalized linear models. Journal of the American Statistical Association,

91, 1450-1460.

Bedrick, E. J., Christensen, R., and Johnson, W. (1997). Bayesian binomial regres-

sion. The American Statistician, 51, 211-218.

Cameron, A.R., Baldock, F.C. (1998a). A new probability formula for surveys to

substantiate freedom from disease. Preventive Veterinary Medicine 34, 1-17.

Cameron, A.R., Baldock, F.C, (1998b). Two-stage sampling in surveys to substanti-

ate freedom from disease. Preventive Veterinary Medicine 34, 19-30.

Cannon, R.M., Roe, R.T. (1982). Livestock disease surveys. A field manual for veteri-

narians. Bureau of Range Science, Department of Primary Industry. Australian

Government Publishing Service, Canberra.

Cannon, R.M. (2001). Sense and sensitivity - designing surveys based on an imperfect

test. Preventive Veterinary Medicine 49, 141-63.

16



Chernick, M.R. and Liu, C.Y. (2002). The saw-toothed behavior of power versus sam-

ple size and software solutions: Single binomial proportion using exact methods.

The American Statistician 56, 149-155.

Gastwirth, J.L., Johnson, W.O. and Reneau, D.M. (1991). Bayesian analysis of

screening data: Application to AIDS in blood donors. Canadian Journal of

Statistics, 19, 135-150.

Geisser, S. (1992). On the curtailment of sampling. Canadian Journal of Statistics

20, 297-309.

Halpern, J., Brown, B.W. and Hornberger, J. (2001). The sample size for a clinical

trial: A Bayesian-decision theoretic approach. Statistics in Medicine 20, 841-858.

Johnson, W.O. and Gastwirth, J.L. (1991). Bayesian inference for medical screening

tests: Approximations useful for the analysis of AIDS data. Journal of the Royal

Statistical Society, B 53, 427-439.

Johnson, W.O., Gastwirth, J.L., and Pearson, L.M. (2001). Screening without a gold

standard: The Hui-Walter paradigm revisited. American Journal of Epidemiol-

ogy 153, 921-924.

Joseph L, du Berger R, Belisle P. (1997). Bayesian and mixed Bayesian/likelihood

criteria for sample size determination. Statistics in Medicine 16, 769-781.

Müller, P. and Parmigiani, G. (1995). Optimal design via curve fitting of Monte Carlo

experiments. Journal of the American Statistical Association 90, 1322-1330.

Rahme, E., Joseph, L. and Gyorkos, T. (2000). Bayesian sample size determina-

tion for estimating binomial parameters from data subject to misclassification.

Applied Statistics 49, 119-228.

17



Rao, C.R. (1973). Linear Statistical Inference and its Applications, 2nd Edn. Wiley,

New York.

Ridge, S.E., Morgan, I.R., Sockett, D.C., Collins, M.T., Condon, R.J., Skilbeck,

N.W., Webber, J.J. (1991). Comparison of the Johne’s absorbed EIA and the

complement-fixation test for the diagnosis of Johne’s disease in cattle. Australian

Veterinary Journal 68, 253-257.

Robert, C.P. and Casella, G. (1999). Monte Carlo Statistical Methods Springer-

Verlag, New York.

Suess, E., Gardner, I.A. and Johnson, W.O. (2002). Hierarchical Bayesian model

for prevalence inferences and determination of a country’s status for an animal

pathogen. Preventive Veterinary Medicine 55, 155-171.

Weiss, R. (1997). Bayesian sample size calculations for hypothesis testing. The

Statistician 46, 185-191.

Whitlock, R.,H., Wells, S.J., Sweeney, R.W. and Van Tiem, J. (2000). ELISA and

fecal culture for paratuberculosis (Johne’s disease): Sensitivity and specificity of

each method. Veterinary Microbiology 77, 387-398.

Zou, K.H. and Normand, S.-L. T. (2001). On determination of sample size in hierar-

chical binomial models. Statistics in Medicine 20, 2163-2182.

Appendix 1: Infinite Population Case

Our method is based on data augmentation and Gibbs sampling. The true disease

state (D) and test results (T) are dichotomous. Consider latent variables z = (z1, z2)

giving the numbers of true positives and negatives, respectively. (See Table 3.) We

calculate each full conditional posterior distribution and iteratively sample from these
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to numerically approximate the posterior distribution of π|x.

The joint posterior based on augmented data satisfies p(π, η, θ|x, z) ∝

πz1+n−x−z2+aπ−1(1−π)x−z1+z2+bπ−1ηz1+aη−1(1− η)n−x−z2+bη−1θz2+aθ−1(1− θ)x−z1+bθ−1.

After some calculation, the full conditional posterior distributions of π, η, θ, z1, z2 are

z1|else ∼ Bin

(
x,

πη

πη + (1− π)(1− θ)

)
, z2|else ∼ Bin

(
n,

(1− π)θ

π(1− η) + (1− π)θ

)
,

η|else ∼ Beta(z1 + aη, n− x− z2 + bη), θ|else ∼ Beta(z2 + aθ, x− z1 + bθ), (9)

π|else ∼ Beta(z1 + n− x− z2 + aπ, x− z1 + z2 + bπ),

where “else” indicates conditioning on x and the other four variables.

The sample size calculation algorithm proceeds as follows.

1. Sample ηi ∼ Beta(aη, bη), θi ∼ Beta(aθ, bθ), i = 1, . . . ,m.

2. Given n, sample xi ∼ Bin(n, πT ηi + (1− πT )(1− θi)), i = 1, . . . ,m.

(a) For each xi, i = 1, . . . ,m, iteratively sample (zi
1j, z

i
2j, η

i
j, θ

i
j, π

i
j), j = 1, . . . ,m1

from the full conditional distributions in (9). Approximate Pn(π ≤ π0|xi) ≈∑m1

j=1

I(πi
j≤π0)

m1
≡ gn0(x

i) for the null case or Pn(π > π0|xi) ≈
∑m1

j=1

I(πi
j>π0)

m1
≡

gn1(x
i) for the alternative.

(b) Calculate p̃n0 ≈
∑m

i=1
I(gn0(xi)≥p0)

m
or p̃n1 ≈

∑m
i=1

I(gn1(xi)>p1)
m

.

3. Increase n and repeat step (2) until finding the smallest n that satisfies equation

(3) or equation (4), that is, nc0 or nc1, respectively. Also report the correspond-

ing number of test positive outcomes, xc0(nc0) = arg maxx{Pnc0(π ≤ π0|x) ≥ p0}

for the null or xc1(nc1) = arg minx{Pnc1(π > π0|x) > p1} for the alternative case.

Similar ideas are applied to the finite and large sample cases.
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Appendix 2: Finite Population Case

Following CB, with number of infected animals d, sensitivity η, and specificity θ,

Pn(T+ = x|d, η, θ) =

min(n,d)∑
y=max(n−N+d,0)

(
d
y

)(
N−d
n−y

)(
N
n

) min(x,y)∑
j=max(x−n+y,0)

(
y

j

)
ηj(1− η)y−j

(
n− y

x− j

)
θn−x−y+j(1− θ)x−j.

(10)

Assuming the discrete prior density p(d) and Beta priors for η and θ, the posterior

mass function for d|x is,

p(d|x) ∝
min(n,d)∑

y=max(n−N+d,0)

(
d
y

)(
N−d
n−y

)(
N
n

) min(x,y)∑
j=max(x−n+y,0)

(
y

j

)
B(j + aη, y − j + bη)×

(
n− y

x− j

)
B(n− x− y + j + aθ, x− j + bθ)p(d),

(11)

where B(·, ·) is the beta function.

1. Sample ηi and θi from their corresponding priors, i = 1, . . . ,m.

2. Given n, sample yi ∼ Hyp(N, NπT , n). Sample t1i and t2i from Bin(yi, ηi) and

Bin(n− yi, 1− θi), respectively. Let xi = t1i + t2i, i = 1, . . . ,m.

3. For each xi, i = 1, . . . ,m, calculate the discrete posterior distribution for d,

pn(d|xi), by normalizing (11). Obtain gn0(x
i) = Pn(d ≤ Nπ0|xi) or gn1(x

i) =

Pn(d > Nπ0|xi) for the alternative.

4. Calculate
∑m

i=1
I(gn0(xi)≥p0)

m
or

∑m
i=1

I(gn1(xi)>p1)
m

.

5. Find nck and xck using the same procedure as in step 3 for the infinite case.

Remarks: If the sample size is near N , the range of possible values for y in the first

summation of (11) is reduced dramatically, resulting in faster calculations. If n = N ,

only one term y = d needs to be considered. Thus, one can easily check whether
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sampling the entire herd would satisfy the criterion before searching for the optimal

sample size. For instance, it took less than 30 seconds to run the null calculation

with N = n = 2000 under the same conditions as in Table 1 with a 466 CPU Celeron

PC. For each d, the binomial coefficients and beta functions can be reused because

y’s and j’s are both consecutive.

We have done analytical integration to obtain the marginal posterior for d in the

hypergeometric case whereas we performed numerical integration in the binomial

case. A result that is analogous to (10) is obtainable for the binomial case.

Appendix 3: Normal Approximation

Let δ = πη + (1 − π)(1 − θ) and x|δ ∼ Bin(n, δ) and let yn ≡ sin−1
√

x/n. For

large n, we have yn|δ ∼̇N(ρ, 1
4n

) where ρ = sin−1
√

δ, cf. Rao (1973, p. 427). If we

assume the (induced) prior on ρ is approximately normal, that is ρ ∼̇N(µρ, 1/τρ), then

the posterior is ρ|x ∼̇N(wyn + (1− w)µρ,
1

4n+τρ
), where w = 4n

4n+τρ
and µρ and τρ are

approximated by sampling. The predictive (marginal) distribution is yn∼̇N(µρ, 1/τρ+

1/4n).

Let δ0 = π0η + (1− π0)(1− θ). Provided η + θ > 1,

gn0(x) = Pn(π ≤ π0|x) = Pn(δ ≤ δ0|x) = Pn(ρ ≤ sin−1
√

δ0|x),

and

gn0(x) ≥ p0 ⇐⇒ Pn(ρ ≤ sin−1
√

δ0|x) ≥ p0

⇐⇒
√

τρ + 4n
[
sin−1

√
δ0 − {wyn + (1− w)µρ}

]
≥Φ−1(p0)

⇐⇒ yn≤yn0

(12)

where yn0 =
[
sin−1

√
δ0 − (1− w)µρ − Φ−1(p0)/

√
τρ + 4n

]
/w.
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For the purpose of determining sample size when π = πT , we consider the distribu-

tion of future data x∗ = T+ of size n, or more particularly, of y∗n ≡ sin−1(
√

T+/n). As

seen earlier, this is y∗n|πT ∼̇N(µρT
, 1/4n + 1/τρT

). Here πT , δT , and ρT are particular

values of π, δ, and ρ and µρT
and τρT

are approximated by sampling. Asymptotically,

P ∗
n(gn0(x

∗) ≥ p0|πT ) ≥ β0 ⇐⇒ P ∗
n(y∗n ≤ yn0|πT ) ≥ β0

⇐⇒ yn0 − µρT√
1/4n + 1/τρT

≥Φ−1(β0).

(13)

We find the smallest n that satisfies this inequality.

In particular,

1. Sample πi, ηi, and θi from the corresponding priors, i = 1, . . . ,m. Obtain

ρi = sin−1
√

πiηi + (1− πi)(1− θi), ρi
T = sin−1

√
πT ηi + (1− πT )(1− θi), i =

1, . . . ,m, and obtain approximations to µρ, µρT
, τρ, and τρT

of µ̄ρ ≡
∑m

1 ρi/m,

µ̄ρT
≡

∑m
1 ρi

T /m, τ̄ρ ≡ m/
∑m

1 (ρi − µ̄ρ)
2, and similarly for τ̄ρT

. Denote the

prior means for η and θ as µη and µθ, respectively, and obtain δ̄0 = π0µη + (1−

π0)(1− µθ).

2. Fix n. Let w̄ = 4n
4n+τ̄ρ

. Substitute appropriate terms with bars over them into

the formula for yn0, and define the result as ȳno. Substitute µ̄ρT
, τ̄ρT

and ȳn0

into (13) and note whether the inequality is satisfied.

3. Increment n and repeat step 2 until we find the smallest n, say nc0 that satisfies

the inequality in (13).

The alternative case is the same as the null case described above except the inequal-

ities are reversed.
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Appendix 4: Proofs of Propositions 1 and 2

Proof of Proposition 1: Let 0 < π0 < 1, fix η, θ and define g(π) = πη+(1−π)(1−θ)
1−{πη+(1−π)(1−θ)} =

δ/(1− δ) and Fx(π0) = Pn(π ≤ π0|x, η, θ); f is the corresponding density of Fx. Note

that g′(π) > 0 provided η + θ > 1. Then

Pn(π ≤ π0|x, η, θ) > Pn(π ≤ π0|x + 1, η, θ) ⇔ Fx(π0) >

∫ π0

0
f(π)g(π)dπ∫ 1

0
f(π)g(π)dπ

⇔Fx(π0){g(1)−
∫ 1

0

Fx(π)dg(π)} − Fx(π0)g(π0) +

∫ π0

0

Fx(π)dg(π) > 0

⇔Fx(π0){g(π0)Fx(π0) +

∫ 1

π0

g(π)dFx(π)− g(π0)}+ {1− Fx(π0)}
∫ π0

0

Fx(π)dg(π) > 0,

after successive integrations by parts. But since g′(π) > 0,
∫ π0

0
Fx(π)dg(π) > 0 and

g(π0)Fx(π0) +
∫ 1

π0
g(π)dFx(π)− g(π0) > g(π0)Fx(π0) + g(π0){1−Fx(π0)}− g(π0) = 0.

A modification of this argument is used to establish the unconditional result. In the

modified argument, f(·) becomes the joint density of (π, η, θ) given x and g(·) is also

regarded as a function of all parameters. In the final expression above, substitute

Fx(π0) with the corresponding marginal probability. The next term in brackets, and

the final term, are replaced by the integrals of the given terms against the joint

density for (η, θ) given x. The final result follows by the same reasoning as above.

The second result is obtained by letting g(π) = 1 − δ and noticing that g′(π) < 0

provided η + θ > 1.

Proof of Proposition 2: Observe that

Pn+1(T
+ ≤ x|πT , η, θ) =

x∑
y=0

(
n + 1

y

)
δy
T (1− δT )n+1−y

=
x∑

y=1

{(
n

y

)
+

(
n

y − 1

)}
δy
T (1− δT )n+1−y + (1− δT )n+1

= Pn(T+ ≤ x|πT , η, θ)− δT Pn(T+ = x|πT , η, θ).
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The result (7) is then derived by induction and the first part of (8) is obtained

integrating against the distribution for (η, θ). The second part of (8) is established

using (7), that is h∗n+1(x1)− h∗n(x0) =∫
{Pn(x0 < T+ < x1|πT , η, θ) + Pn(T+ = x1|πT , η, θ)(1− δT )}p(η, θ)dηdθ > 0.
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N = 50 N = 265 N = 500 Bin Normal
Bayes CB Bayes CB Bayes CB Bayes Bayes

π0 nci/xci nc/xc nci/xci nc/xc nci/xci nc/xc nci/xci nci

H0 with πT = 0

0.10 48/4 40/2 102/7 64/3 116/8 65/3 132/9 127
0.15 35/3 29/2 51/4 36/2 52/4 37/2 53/4 61
0.20 21/2 25/2 33/3 28/2 34/3 28/2 35/3 39
0.25 19/2 16/1 22/2 17/1 22/2 17/1 22/2 28
0.30 16/2 13/1 18/2 14/1 18/2 14/1 18/2 21

H1 with πT = 0.3

0.05 17/3 18/3 23/4 23/4 22
0.10 32/7 44/9 45/9 45/9 44
0.15 38/9 78/18 91/21 109/25 96

Table 1: Sample sizes for the FMD investigation. The Bayesian method uses p0 =
p1 = 0.95 and β0 = β1 = 0.95. The Cameron-Baldock (CB) criterion uses minimum
expected prevalence equal to π0 and Type I and Type II error probabilities of 0.05.
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N = 50 N = 265 N = 500 Binomial Normal
π0 n/xci/p̃ni n/xci/p̃ni n/xci/p̃ni n/xci/p̃ni n/p̃ni

H0 with πT = 0

0.10 50/0/0.49 265/8/0.89 350/11/0.9 339/11/0.88 253/0.9
0.20 50/0/0.8 106/5/0.95 117/5/0.95 113/5/0.95 100/0.95

H1 with πT = 0.2

0.05 50/5/0.79 225/15/0.95 227/15/0.95 250/16/0.95 163/0.95
0.10∗ 50/0/0.49 265/22/0.83 500/39/0.90 500/39/0.89 503/0.95

180/15/0.80 250/21/0.80 250/21/0.80 340/0.90
150/13/0.75 200/17/0.79 150/13/0.74 169/0.80
100/9/0.70 100/9/0.70 123/11/0.70 90/0.70

Table 2: Sample sizes for bovine paratuberculosis. pi = 0.95 for all cases except
p1 = 0.90 for π0 = 0.1 and πT = 0.2. Uniform prior for prevalence.

D+ D− Total

T+ z1 x− z1 x

T− n− x− z2 z2 n− x

Table 3: Augmented Data Representation
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Figure 1. Sample size n (for null calculation with πT = 0) versus

corresponding p̃n0 for π0 ∈ (0.05, 0.10, 0.20, 0.30); normal (solid line)

and binomial (dotted). p1 = p2 = 0.95, π ∼ Beta(1,1), η ∼ Beta(68.74,

4.57), θ ∼Beta(107.20, 3.17).
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Figure 2. Normal and Hypergeometric sample size curves under the

same conditions as given in Figure 1
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